

UNIVERSITY OF MYSORE

Postgraduate Entrance Examination June/July 2017

SUBJECT CODE : 45

QUESTION BOOKLET NO.

115262

QUESTION BOOKLET

(Read carefully the instructions given in the Question Booklet)

COURSE :

M.Sc.

SUBJECT:

Chemistry

MAXIMUM MARKS: 50

MAXIMUM TIME: ONE HOUR

(Including initial 10 minutes for filling O.M.R. Answer sheet)

INSTRUCTIONS TO THE CANDIDATES

- 1. The sealed questions booklet containing 50 questions enclosed with O.M.R. Answer Sheet is given to you.
- 2. Verify whether the given question booklet is of the same subject which you have opted for examination.
- Open the question paper seal carefully and take out the enclosed O.M.R. Answer Sheet outside the question booklet and fill up the general information in the O.M.R. Answer sheet. If you fail to fill up the details in the form of alphabet and signs as instructed, you will be personally responsible for consequences arising during scoring of your Answer Sheet.
- 4. During the examination:
 - a) Read each question carefully.
 - b) Determine the Most appropriate/correct answer from the four available choices given under each question.
 - c) Completely darken the relevant circle against the Question in the O.M.R. Answer Sheet. For example, in the question paper if "C" is correct answer for Question No.8, then darken against SI. No.8 of O.M.R. Answer Sheet using Blue/Black Ball Point Pen as follows:
 - Question No. 8. (A) (B) (Only example) (Use Ball Pen only)
- 5. Rough work should be done only on the blank space provided in the Question Booklet. Rough work should not be done on the O.M.R. Answer Sheet.
- 6. <u>If more than one circle is darkened for a given question, such answer is treated as wrong and no mark will be given. See the example in the O.M.R. Sheet.</u>
- 7. The candidate and the Room Supervisor should sign in the O.M.R. Sheet at the specified place.
- 8. Candidate should return the original O.M.R. Answer Sheet and the university copy to the Room Supervisor after the examination.
- 9. Candidate can carry the question booklet and the candidate copy of the O.M.R. Sheet.
- 10. The calculator, pager and mobile phone are not allowed inside the examination hall.
- 11. If a candidate is found committing malpractice, such a candidate shall not be considered for admission to the course and action against such candidate will be taken as per rules.

INSTRUCTIONS TO FILL UP THE O.M.R. SHEET

- 1. There is only one most appropriate/correct answer for each question.
- 2. For each question, only one circle must be darkened with BLUE or BLACK ball point pen only. Do not try to alter it.
- 3. Circle should be darkened completely so that the alphabet inside it is not visible.
- 4. Do not make any stray marks on O.M.R. Sheet.

ಗಮನಿಸಿ : ಸೂಚನೆಗಳ ಕನ್ನಡ ಆವೃತ್ತಿಯು ಈ ಮಸ್ತಕದ ಹಿಂಭಾಗದಲ್ಲಿ ಮುದ್ರಿಸಲ್ಪಟ್ಟಿದೆ.

- 1) Buckminster fullerene C-60 is a new allotrope of carbon and is considered to be most symmetric molecule known, which is build from
 - (A) Six member and five member carbon rings involving sp² hybridization
 - (B) Seven member and five member carbon rings involving sp³ hybridization
 - (C) Five member and four member carbon rings involving sp³ hybridization
 - (D) None of the above but only due to delocalization of electrons
- 2) In the quantitative analysis of nitrogen by Kjeldhal method initially the compound is digested with concentrated sulphuric acid and similarly in case of sulphur determination by Carius method the compound is treated with either peraoxide or nitric acid. The formed species in those reactions respectively are
 - (A) Ammonia and sulphite
 - (B) Ammonium sulphate and sulphate
 - (C) Ammonium sulphate and thiosulphate
 - (D) Ammonium sulphate and sulphide
- 3) In benzene ring pi-electons are loosely held therefore it prefers to undergo
 - (A) Nucleophilic substitution
 - (B) Free radical substitution
 - (C) Electrophilic substitution
 - (D) Complexation reaction
- When toluene is treated first with oxidant followed by nitric acid and sulphuric acid and in another instant the same compound is treated with reagents in reverse order. The products formed are
 - (A) ortho-nitrobenzoic acid and the mixture of ortho-and para nitro benzoic acids
 - (B) para-nitrobenzoic acid and the mixture of ortho-and mata-nitro benzoic acids
 - (C) para-nitrobenzoic acid and meta nitro benzoic acid
 - (D) Mata-nitrobenzoic acid and the mixture of ortho-and para nitro benzoic acids

5)	When ethyl benzene is treated with chlorine gas under light source or heat, it produces 1- phenyl, 1-chloro ethane with 91% yield and 2 phenyl-chloro ethane with only 9% yield					
		Since hydrogen bonded to see	cond carb	on of benzylic group.		
	(B)					
	(C)					
	(D)	None of the above	7			
5)		When triphenyl chloro methane is treated with zinc in benzene at about 180 degree it produces hexaphenyl ethane. This product formation could be explained via				
	(A)	Substitution mechanism	(B)	Redox reaction		
	(C)	Free radical mechanism	(D)	None of the above		
7)	indu			gas but it can be sensibly used for ignard reagent followed by an acid		
	(A)	an alcohol	(B)	a phenol		
	(C)	a dicarboxylic acid	(D)	a carboxylic acid		
3)	Who	en meta- toluic acid is treated w	ith lithium	aluminum hydride it produces		
	(A)	m- methyl phenol	(B)	m-methyl chlorobenzene		
	(C)	m-methyl benzyl alcohol	(D)	None of the above		
))	by s	Para nitro benzoic acid is a stronger acid than benzoic acid. It is not only favored by substituent but also enthalpy, entropy and obviously Gibb's free energy. In this case it is decided by substituent which is having the nature				
	(A)	Election donating	(B)	Electron withdrawing		
	(C)	Non polarisable	(D)	Resonance structure destabilizing		
0)	Whe	When copper and iron are corroded the products formed respectively are				
	(A)	Copper carbonate and iron car	rbonate			
	(B)	Copper hydroxide and iron hy	droxide			
	(C)	Copper oxide and iron oxide				
	(D)	Copper (ii) hydroxo corbonate	and hydr	ated ferric oxide		
1 -2	2354		[3]	(P.T.O.)		

	11)	When commercial polymer is manufactured it normally produces the same polymer with different degrees of polymerization. It is therefore, number average molecular weight and weight average molecular weight are determined in such cases the do not agree one another indicating that				
		(A) Polymer is a heterogeneous mixture (B) Single polymer				
		(C) Less homogeneous (D) None of the above				
12)	12)	Silicone polymers HO (SiR ₂ O) _n H are finding large applications due to their stability light weight and bio-acceptability in addition they retain their structure in the temperature				
		(A) Normal temperature to above boiling point temperature				
		(B) Zero degree to 200 degree				
		(C) - 90 degree to about 150 degree				
		(D) Zero degree Kelvin to 300 degree				

13) Ziegler-Natta catalyst is

(A) a mixture of beryllium titanium salts

(B) a mixture alkyl alluminium chloride and coboltous chloride

(C) a mixture of di ethyl alluminium chloride and titanium chloride

(D) alkyl titanium chloride

14) Fuel cell involves combustible fuel and it is oxidized at anode and the oxidant is reduced at the cathode. Therefore in the hydrogen oxygen flue cell the net cell reaction must involve

(A) Hydrogen and carbon dioxide

(B) Hydrogen and carbon monoxide

(C) Hydrogen and nitric oxide

(D) Hydrogen and oxygen

15) Nickel cadmium cell is involving cadmium and nickel in presence of alkali in that cadmium and nickel change their oxidation states respectively from

(A) +3 to +2 and 0 to +2

(B) +4 to +3 and 0 to +2

(C) +2 to +4 and 0 to +0

(D) None of the above

16) Among the allotropic forms of sulphur with 8-atoms and sulphur with 6-atom are normally stable and stability of those can be attributed to the respective conformation

(A) Octane and benzene like

(B) Octane and hexane like

(C) Puckered cyclohexane and twisted octane like

(D) Crown and chair like

17) When a beam of x-rays of definite wavelength is father successive layers of atom presenting planes parare equi distance on one another and the reflect the rawhen the path difference is			allel to the crystal face and	
	(A) $\lambda = d\sin\theta$	(B)	$\lambda = d/2$	2 sinθ
	(C) $2\lambda = 3d\sin\theta$		$n\lambda = 2$	
18)	from the planes (100) of the rock salts the maximum intensity are found to be at 5.9 degree 11.85 degree and 18.15 degree, the sign angles of these are found to be 0.103, 0.250 and 0.312. These are in the approximate ratio and account for Bragg's equation.			
	(A) 2:1:3			3:1:3
	(C) 1:2:3		(D)	None of the above
19)	From the study of dipole moment and degree of hydrogen bond formation of certain molecules it would be possible to distinguish between their possible geometries, for example, maleic acid and fumaric acid have none positive dipole moment, therefore, their trans isomers must have (A) Dipole moment values greater than cis isomer (B) Negative dipole moment greater than cis isomer (C) Zero dipole moment (D) None of the above			
20)	When an aldehyde is treated with tri ethy obtained are	yl bora	ne follo	owed by an acid the products
	(A) Ethane and phenol	(B)	Ethan	e and carboxylic acid
	(C) Ethane and alcoho	(D)	Ethen	e and alcohol
21)	Gold and silver can be extracted from their finely powdered ores initially by treating with aqueous sodium cyanide followed by zinc. The respective reactions involved are the formation of their (A) Cyanides and oxidation (B) Metals (C) Cyano complexes and reduction to metals (D) None of the above			

[5]

M-2354

(P.T.O.)

(A) Dissociated form	(B)	Manomeric form		
(C) Dimeric form	(D)	Fragmented		
molecules, water and sulphur dioxide a These properties can be due to (A) No electro negativity between the (B) Planar structures (C) There are no lone pair electrons	re wi	th non zero dipole moment values		
) There is a semi empirical method for calculating the lattice energies without Madelung constants of ionic compounds containing non spherical ions. Such lattice energy equation is called				
(A) Born-Lande equation	(B)	Born-Haber equation		
(C) Lande equation	(D)	Kapustinskii's equation		
First order NMR spectra of compounds show separate lines for each distinct magnetic nucleus. It is therefore, NMR spectrum of ethanol and F ¹⁹ (I= ½ spectrum of SF ₄ must have the lines				
마다 보통하는 보통 마다 마다 그리고 있다면 하는 사람들은 사람들이 가지 않는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하		Four lines and three lines		
(C) Two lines and one line	(D)	None of the above		
Radioactive decay constant, λ of radio active isotope is derived from the equatio leading to the equation containing half life period $\lambda=0.693/t_{1/2}$.				
(A) $N_0 = Ne^{-\lambda t}$		$N=N_0 e^{-\lambda t}$		
(C) $N_0 = N_0 e^{-\lambda/t}$	(D)	$N=N_0^3 e^{-\lambda/t}$		
General equation for the calculation of magnetic moment of a metal ion is compound which is involving spin orbit coupling is given by the equation $\mu=g$ [J (j+1)] ^{1/2} Bohr magneton where $g=1+j$ (J+1) + S (S+1) - L(L+1) /2 (J+1). This equation is more or less followed by				
		main block elements		
(C) actinides	(D)			
	molecules, water and sulphur dioxide at These properties can be due to (A) No electro negativity between the (B) Planar structures (C) There are no lone pair electrons (D) Linear and angular geometries There is a semi empirical method for Madelung constants of ionic compoundattice energy equation is called (A) Born-Lande equation (C) Lande equation First order NMR spectra of compound magnetic nucleus. It is therefore, NM spectrum of SF ₄ must have the lines (A) Two lines and two lines (C) Two lines and one line Radioactive decay constant, λ of radio a leading to the equation containing half (A) N ₀ =Ne ^{-λt} (C) N ₀ =N ₀ e ^{-λt} General equation for the calculation compound which is involving spin or μ=g [J (j+1)] ^{1/2} Bohr magneton where (J+1). This equation is more or less fol (A) transition elements	(A) No electro negativity between the comb (B) Planar structures (C) There are no lone pair electrons (D) Linear and angular geometries There is a semi empirical method for calculative energy equation is called (A) Born-Lande equation (B) (C) Lande equation (C) Lande equation (D) First order NMR spectra of compounds show an agnetic nucleus. It is therefore, NMR spectrum of SF_4 must have the lines (A) Two lines and two lines (B) (C) Two lines and one line (C) Two lines and one line (D) Radioactive decay constant, λ of radio active a leading to the equation containing half life period (A) $N_0 = Ne^{-\lambda t}$ (B) (C) $N_0 = N_0 e^{-\lambda t}$ (D) General equation for the calculation of macompound which is involving spin orbit of $\mu = g$ [J ($j+1$)] ^{1/2} Bohr magneton where $g = J$ ($J+1$). This equation is more or less followed (A) transition elements (B)		

22) When the molecular weight of acetic acid in its very dilute solution of benzene is

determined by cryoscopic method. The value found is about 110; it is therefore

- 28) Methane, ammonia and water are isoelectronic but have different structure and properties; these could be due to central atom
 (A) sp³ hybridisation and no lone pair of electron
 (B) sp³ hybridisation with different no of lone pair of electron
 (C) dsp² hybridisation and hydrogen bonding
 (D) none of the above
- 29) [Ti (H₂O)₆]³⁺ shows maximum absorption band at 490 nanometer in its absorption spectrum. This could be assigned to the electronic transition and if water is replaced by CN- the respective transition and position of maximum absorption can be indicated by
 - (A) e_2 to t_2 and 490 nm
- (B) t_2 to e_2 and 490 nm
- (C) t_{2g} to e_{g} and $\langle 490 \text{ nm} \rangle$
- (D) CT and >490
- 30) The fundamental vibrational frequency of H ³⁵Cl and D ³⁵Cl occur respectively at 2886 and 2891 cm ⁻¹ this can be attributed to
 - (A) difference in isotopic masses of chlorine
 - (B) too difference in bond energies
 - (C) difference in hydrogen bonding
 - (D) difference in reduced masses of H and D
- 31) the relation ship between the rate constant, k of a reaction the activation energy, E and the frequency factor A and reaction temperature T is an important that could be made use for calculating thermo dynamic factors. This relationship is very sensitive to activation energy and is given by the relation
 - (A) $A = k e^{-E/RT}$

(B) $E = k e^{-A/RT}$

(C) $k = A e^{-E/RT}$

- (D) none of the above
- 32) Reverse osmosis could be made use even for the purification of water when a suitable semi permeable membrane is available and the force required for this comes from
 - (A) outside application
 - (B) built within the system due to pressure difference
 - (C) due to natural diffusion
 - (D) none of the above

33)	Decomposing of ammonia at follows	about 1130 K c	on the surface of platifium catalys
	(A) first order kinetics	(B)	second order kinetics
	(C) fractional order kinetics	(D)	zero order kinetics
34)	When arsenic is doped with g	germanium it for	ms the semi conductor which is or
	(A) p-type semi conductor	(B)	n- type
	(C) npn-type	(D)	pn -type
35)	The number of lone pair ele, H ₂ O, NH ₄ and H ₃ O + are in		n central atom of molecule, NH
	(A) (1, 0, 3, 2)		(1, 0, 2, 1)
	(C) (1, 0, 1, 2)	(D)	(1, 2, 0, 1)
36)	explained with variables pres	sure, temperatur eneral equation hich is	pexisting different phases can be re and composition. Such phases of involving components, C, Phases I $C = F + 2 - P$
	(C) $C - P + 2 = F$	(D)	none of the above
37)	CO and N ₂ are isoelectronic sproperties and different stretch	pecies with same	e bond order but they show differents which could be attributed to
	(A) electron deficiency	(B)	variation in abundance
	(C) electronegativity differen	nce (D)	none of the above
38)	pH value of the solution havi	ng hydrogen ion	concentration, 1.8×10 ⁻⁵ is
	(A) 5	(B)	4
	(C) 5.1	(D)	4.7
39)	salt. If acetate buffer is used of acetic acid are related the equation which is (A) pKa = pH + log [CH ₃ C (B) pH = pKa - log [CH ₃ C (B) pH = l	the relation betwrough an equati COO-] / [CH ₃ C COO-] / [CH ₃ C	OOH]
	(C) $pH = pKa + log [CH_3]$	COO-] / [CH ₃ C	COOH]
	(D) $pH = pKa - log [CH_3C]$	COOH] / [CH ₃ C	COO-]

0)	When chloride is determined from a sample the average of the four determinations (4) is found to be 32.46 and it is given that f_{99} , SD 0.17. The confident limit is calculated by				
		average value + or - f ₉₉ × SD			
		average value + $f_{99} \times SD$			
		average value - $f_{99} \times SD$			
		average value + or - f ₉₉ / SD			
1)	close	SCN ₂ , and SeCN ₂ are derived from ely imitate halide ions with respect efore they are conventionally called	the to th	respective uni-negitive ions which eir reactions with metal ions. It is	
		halogens	(B)	halogen family ions	
		pseudohalogens	The state of the s	chalconides	
12)	Whi	ch one of the following represents a	set o	f electrophiles	
-,		Br ⁺ and :CCl ₂	(B)	AlCl ₃ and Cl	
				CN-and NH ₃	
13) The percentage of constituent A in AB is found to be 2 22.53. These must give arithmetic mean, mean deviativalues			nd to be 22.64, 22.54, 22.61, and an deviation and relative deviation		
	(A)	0.6, 0.4, 2.0	(B)	60, 40, 20	
	(C)	+0.06, 0.045, 0.2	(D)	None of the above	
14)	The	most reactive among the following	towa	rds sulphonation is	
,		toluene	(B)		
	,	nitrobenzene	(D)	meta-xylene	
45)	In o be o iron	xygenated hemoglobin shows O-O diamagnetic. It is therefore, the mos	streto t pro	ch 1106 cm ⁻¹ and the it is found to bable form the oxygen is bound to	
		oxide	(B)	oxygen molecule	
	(C)	(BOSEN) 경험 이 경영 하는 (BESELE) 등 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(D)	그림은 경찰하는 경에 문화 환경하게 되었다고 하는 아니는 아니는 사람이 되었다. 그는 아니는 아니는 아니는 아니는 아니는 아니는 아니는 아니는 아니는 아니	
46)	Din	nidiation of cyclopentadiene is an ex	ampl	e of a	
,		Friedelcraft reaction	(B)		
	' '	Condensation polymerization	(D)	Diels-Alder reaction	
M	2354	[9]		(P.T.O.)	

- 47) Which of the following rearrangement is not acid catalyzed.
 - (A) Beckman

(B) Fries

(C) Hofmann

(D) Pinacol - Pinacolone

48) In nitration, a mixture of concentrated nitric acid and sulphuric is used. In that nitronium ion formed, which is involved in the nitration of benzene and is also a slow step. It is therefore for generation of nitronium ion nitric acid must act with respect to sulphuric acid as

(A) base

(B) strong acid

(C) neutral

(D) amphitoric

49) the most important method for preparing heavier actinides is by heavy ion bombardment accelerated in cyclotron with target materials. In such case ₉₉ Es ²⁵³ forms new element with ejection of one neutron. Similarly, ₉₈Cf ²⁵² with ₅B ¹¹ will form new element with ejection of six neutrons. Those new elements formed must have the atomic number and mass number,

(A) (101, 257 and 104, 263)

(B) (96, 253 and 93, 252)

(C) (101, 256 and 103, 257)

(D) (99, 253-98, 252)

Viscosity of a liquid is due to the interaction between adjacent layers of molecules and it shows resistance to its flow which is governed by Poiseuille equation for the flow of known volume of liquid trough a capillary tube of known radius and length, when a simplification is made through Stokes equation and keeping the experimental conditions constant for two liquids of viscosities η'^{-1} and η'^{2} with respective densities d_1 and d_2 experience flow times t_1 and t_2 . The relation involving these parameters must be

(A) $\eta'^1 / \eta'^2 = d_1 t_1 / d_2 t_2$

(B) $\eta'^1 d_1 / \eta'^2 d_2 = t_1/t_2$

(C) $\eta'^{1} / \eta'^{2} = d_{1}/d_{2}$

(D) None of the above

000

Rough Work

ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು

- 1. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಜೊತೆಗೆ 50 ಪ್ರಶ್ನೆಗಳನ್ನು ಹೊಂದಿರುವ ಮೊಹರು ಮಾಡಿದ ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ನಿಮಗೆ ನೀಡಲಾಗಿದೆ.
- 2. ಕೊಟ್ಟಿರುವ ಪ್ರಶ್ನೆ ಮಸ್ತಕವು, ನೀವು ಪರೀಕ್ಷೆಗೆ ಆಯ್ಕೆ ಮಾಡಿಕೊಂಡಿರುವ ವಿಷಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ್ದೇ ಎಂಬುದನ್ನು ಪರಿಶೀಲಿಸಿರಿ.
- 3. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಮೊಹರನ್ನು ಜಾಗ್ರತೆಯಿಂದ ತೆರೆಯಿರಿ ಮತ್ತು ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಿಂದ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯನ್ನು ಹೊರಗೆ ತೆಗೆದು, ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಸಾಮಾನ್ಯ ಮಾಹಿತಿಯನ್ನು ತುಂಬಿರಿ. ಕೊಟ್ಟಿರುವ ಸೂಚನೆಯಂತೆ ನೀವು ನಮೂನೆಯಲ್ಲಿನ ವಿವರಗಳನ್ನು ತುಂಬಲು ವಿಫಲರಾದರೆ, ನಿಮ್ಮ ಉತ್ತರ ಹಾಳೆಯ ಮೌಲ್ಯಮಾಪನ ಸಮಯದಲ್ಲಿ ಉಂಟಾಗುವ ಪರಿಣಾಮಗಳಿಗೆ ವೈಯಕ್ತಿಕವಾಗಿ ನೀವೇ ಜವಾಬ್ದಾರರಾಗಿರುತ್ತೀರಿ.
- 4. ಪರೀಕ್ಷೆಯ ಸಮಯದಲ್ಲಿ:
 - a) ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಯನ್ನು ಜಾಗ್ರತೆಯಿಂದ ಓದಿರಿ.
 - b) ಪ್ರತಿ ಪ್ರಶ್ನೆಯ ಕೆಳಗೆ ನೀಡಿರುವ ನಾಲ್ಕು ಲಭ್ಯ ಆಯ್ಕೆಗಳಲ್ಲಿ ಅತ್ಯಂತ ಸರಿಯಾದ/ ಸೂಕ್ತವಾದ ಉತ್ತರವನ್ನು ನಿರ್ಧರಿಸಿ.
 - c) ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆಯ ವೃತ್ತಾಕಾರವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬಿರಿ. ಉದಾಹರಣೆಗೆ, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8ಕ್ಕೆ "C" ಸರಿಯಾದ ಉತ್ತರವಾಗಿದ್ದರೆ, ನೀಲಿ/ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಬಳಸಿ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಕ್ರಮ ಸಂಖ್ಯೆ 8ರ ಮುಂದೆ ಈ ಕೆಳಗಿನಂತೆ ತುಂಬಿರಿ:
 - ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8. 🔘 🔘 🔘 (ಉದಾಹರಣೆ ಮಾತ್ರ) (ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಮಾತ್ರ ಉಪಯೋಗಿಸಿ)
- 5. ಉತ್ತರದ ಪೂರ್ವಸಿದ್ದತೆಯ ಬರವಣಿಗೆಯನ್ನು (ಚಿತ್ತು ಕೆಲಸ) ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಒದಗಿಸಿದ ಖಾಲಿ ಜಾಗದಲ್ಲಿ ಮಾತ್ರವೇ ಮಾಡಬೇಕು (ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಮಾಡಬಾರದು).
- 6. ಒಂದು ನಿರ್ದಿಷ್ಟ ಪ್ರಶ್ನೆಗೆ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ವೃತ್ತಾಕಾರವನ್ನು ಗುರುತಿಸಲಾಗಿದ್ದರೆ, ಅಂತಹ ಉತ್ತರವನ್ನು ತಮ್ಮ ಎಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ಅಂಕವನ್ನು ನೀಡಲಾಗುವುದಿಲ್ಲ. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಉದಾಹರಣೆ ನೋಡಿ.
- 7. ಅಭ್ಯರ್ಥಿ ಮತ್ತು ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರು ನಿರ್ದಿಷ್ಟಪಡಿಸಿದ ಸ್ಥಳದಲ್ಲಿ ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯ ಮೇಲೆ ಸಹಿ ಮಾಡಬೇಕು.
- 8. ಅಭ್ಯರ್ಥಿಯು ಪರೀಕ್ಷೆಯ ನಂತರ ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರಿಗೆ ಮೂಲ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆ ಮತ್ತು ವಿಶ್ವವಿದ್ಯಾನಿಲಯದ ಪ್ರತಿಯನ್ನು ಹಿಂದಿರುಗಿಸಬೇಕು.
- 9. ಅಭ್ಯರ್ಥಿಯು ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ಮತ್ತು ಓ.ಎಂ.ಆರ್. ಅಭ್ಯರ್ಥಿಯ ಪ್ರತಿಯನ್ನು ತಮ್ಮ ಜೊತೆ ತೆಗೆದುಕೊಂಡು ಹೋಗಬಹುದು.
- 10. ಕ್ಯಾಲ್ಕುಲೇಟರ್, ಪೇಜರ್ ಮತ್ತು ಮೊಬೈಲ್ ಘೋನ್ಗಳನ್ನು ಪರೀಕ್ಷಾ ಕೊಠಡಿಯ ಒಳಗೆ ಅನುಮತಿಸಲಾಗುವುದಿಲ್ಲ.
- 11. ಅಭ್ಯರ್ಥಿಯು ದುಷ್ಕೃತ್ಯದಲ್ಲಿ ತೊಡಗಿರುವುದು ಕಂಡುಬಂದರೆ, ಅಂತಹ ಅಭ್ಯರ್ಥಿಯನ್ನು ಕೋರ್ಸ್ ಗೆ ಪರಿಗಣಿಸಲಾಗುವುದಿಲ್ಲ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಇಂತಹ ಅಭ್ಯರ್ಥಿಯ ವಿರುದ್ಧ ಕ್ರಮ ಕೈಗೊಳ್ಳಲಾಗುವುದು. <u>ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯನ್ನು ತುಂಬಲು ಸೂಚನೆಗಳು</u>
- 1. ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಗೆ ಒಂದೇ ಒಂದು ಅತ್ಯಂತ ಸೂಕ್ತವಾದ/ಸರಿಯಾದ ಉತ್ತರವಿರುತ್ತದೆ.
- 2. ಪ್ರತಿ ಪ್ರಶ್ನೆಗೆ ಒಂದು ವೃತ್ತವನ್ನು ಮಾತ್ರ ನೀಲಿ ಅಥವಾ ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ನಾಂದ ಮಾತ್ರ ತುಂಬತಕ್ಕದ್ದು. ಉತ್ತರವನ್ನು ಮಾರ್ಪಡಿಸಲು ಪ್ರಯತ್ನಿಸಬೇಡಿ.
- 3. ವೃತ್ತದೊಳಗಿರುವ ಅಕ್ಷರವು ಕಾಣದಿರುವಂತೆ ವೃತ್ತವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬುವುದು.
- 4. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿ ಯಾವುದೇ ಅನಾವಶ್ಯಕ ಗುರುತುಗಳನ್ನು ಮಾಡಬೇಡಿ.

Note: English version of the instructions is printed on the front cover of this booklet.